

NZCSC 2025 Writeups

CHALLENGE

NAME

CATEGORY DIFFFICULTY AUTHOR

1 Basic Hide and Seek Steganography Medium SecurityLit

2 Fun Facts Web Medium SecurityLit

3 Mysterious Browser

Identity

Forensics Medium SecurityLit

4 Note API Web Easy Vimal

5 The Insider’s Footprint Forensics Medium SecurityLit

6 Reversal Protocol Reverse

Engineering

Hard SecurityLit

7 ChronoCorp Secure

Archive Portal

Web Medium SecurityLit

8 Signal from Sector 91 Cryptography Hard SecurityLit

9 Super AI Trader PWN Hard SecurityLit

10 SecureVault Reverse

Engineering

Hard SecurityLit

11 Oracle of Odds and

Evens

Cryptography Very Hard SecurityLit

12 Operation Ghost Beacon Forensics Very Hard SecurityLit

13 Headerless Truth Forensics Easy SecurityLit

14 Log Analysis Forensics Very Easy Vimal

15 Secure Login Web Very Easy Vimal

16 Cyber Space Web Very Easy Vimal

Challenge 1: Basic Hide and Seek

Step 1: Inspecting the Image

Open the image in any viewer — it looks like just a normal image (shown below):

Step 2: Running Binwalk

To find any embedded files, use the 'binwalk' tool, command: binwalk nothing.jpg

Observation: A hidden ZIP archive is embedded within the image file!

Step 3: Extract the Embedded Archive

Now let's extract the embedded data using '-e' flag:

Warning:

One or more files failed to extract: either no utility was found or it's unimplemented Despite

the warning, a folder named '_nothing.jpg.extracted' is created.

Step 4: Check the Extracted Files

Navigate to the extracted directory and list the files. You’ll find:

- secretctf.txt

Command: cat secretctf.txt

Content: FLAG[FAFEDCABCCDEFDRF]

Challenge 2: Fun Facts

Step 1: Open the challenge URL

Step 2: Now view source code of the challenge

Step 3: You will see a Base 64 encoded string at down, decode that base 64 string

Step 4: After decoding that base 64 you will get an external URL, open that

Step 5: Now copy that java script code and past in your browser console and that, the flag

will pop up

Challenge 3: Mysterious Browser Identity

Step 1: Open the challenge PCAP file in the Wireshark application

Step 2: Filter HTTP requests and find the high-length POST request

Step 3: Click 'Follow HTTP Stream’ and you will see a Base64 string in the User-Agent.

Step 4: Now, decode that Base64 string, and you will get the flag.

Challenge 4: Note API

Step 1: Checkout the document for the Note API about available endpoints, parameters and

content type, etc.

Step 2: Try to login with the credential provided in the description part, follow the API doc,

using POSTMAN.

Ensure that the request is “POST” request to the endpoint: “login”, with Content-Type being

“application/json” and the credential in json format in the Body tab:

Step 3: After login, call the /notes endpoint to list all the notes for the user.

You will find the user has 10 notes each identified by a 4-digit ID (1041 to 1050), and there is

no flag in these notes.

Step 4: Try to get notes with different IDs against the /note/{ID} endpoint

You find that the endpoint does not check whether you are authorised to get that note, e.g.,

you can get note 1066 which does not belong to the user. This is a vulnerability.

Step 5: Exploiting this vulnerability by enumerating notes and you get the flag inside note

1077!

Challenge 5: The Insider’s Footprint

Step 1: Unzip the docx file [unzip secret_report.docx -d extracted/]

Step 2: Now go to docProps and open each custom.xml file

Step 3: In one of the files there is the flag encoded in base45, copy the value and go to

CyberChef to decode it to get the flag

Challenge 6: Reversal Protocol

The challenge is divided into two core parts:

1. Reversing the password verification logic

2. Extracting and decoding the hidden flag

Tools used: IDA Pro with Hex-Rays, Ghidra, or any disassembler/debugger capable of static

analysis.

Step 1: Analyzing the main()

The main() function logic is as follows:

Takeaway:

• The program expects one argument.

• If the password check (sub_12A0) passes, it prints the flag (sub_1210).

• Otherwise, it prints a rejection message.

 int64 fastcall main(int argc, char **argv, char **envp)

{

if (argc == 2)

{

if(sub_12A0(argv[1]))

sub_1210();

else

puts("Wrong password! Try harder.");

return 0;

}

else

{

printf_chk(2, "Usage: %s <password>\n", *argv);

return 1;

}

}

Step 2: Reversing the Password Logic – sub_12A0()

This function checks the user-provided password by reversing a hardcoded string and

comparing:

Insight:

• The string “reverseme” is copied to v6.

• Then, a pointer-based loop copies the characters in reverse order from v6 to s2.

• Finally, it checks if the user input matches the reversed string.

Visual Explanation of the Reversal:

Original (aReverseme): r e v e r s e m e

Indexes: 0 1 2 3 4 5 6 7 8

Reversed (s2): e m e s r e v e r

So, the reversed version of “reverseme” is “emesrever”, which is the password!

_BOOL8 fastcall sub_12A0(const char *a1)

{

for (i = 0; i != 9; ++i)

v6[i] = aReverseme[i];

v2 = &v7;

v3 = s2;

do {

*v3++ = *v2;

v4 = v2--;

} while (v4 != v6);

s2[9] = 0;

return strcmp(a1, s2) == 0;

}

Step 3: Extracting the Flag – sub_1210()

Explanation:

• The flag is encoded as a sequence of bytes.

• Each byte has been incremented by 1 from its original ASCII value.

• The loop subtracts 1 and prints the decoded string.

Step 4: Executing the Binary:

You can run the binary with the recovered password:

Final Summary:

• Recovered password: emesrever

• Recovered Flag: FLAG[94C7F8D2BAE5637C]

• Techniques used: String reversal, memory pointer analysis, static binary decoding

unsigned int64 sub_1210()

{

char v0 = byte_4010;

...

do {

v5[v1++ - 1] = v0 - 1;

v0 = *((_BYTE *)&off_4008 + v1 + 7);

} while (v0);

printf("Congratulations! Flag: %s\n", v5);

}

$./rev emesrever

Congratulations! Flag: FLAG[94C7F8D2BAE5637C]

Challenge 7: ChronoCorp Secure Archive Portal

Step 1: Open the URL: http://ctf.nzcsc.org.nz:52700/

http://ctf.nzcsc.org.nz:52700/

Step 2: Check robots.txt and source code of the website there you will get some directory

Step 3: Now check each found endpoint, the right endpoint is /server_assets/, copy the path

and go to that endpoint

Step 4: Now after accessing http://ctf.nzcsc.org.nz:52700/server_assets/ you will get another

endpoint, then copy and go to that path

Step 5: There you get a .bak file open and read all the instructions and take notes

- It says you can retrieve public files if /docs/browse fails (a possibly path traversal)

- There is a log file admin_files/system_status.log

- Admin doc id CV_MASTER_RESET_SEQ_001

http://ctf.nzcsc.org.nz:52700/server_assets/

Step 6: Now try to access the admin log file by visiting files retrieving feature also take

another note that there are two parameters used for file accessing

Step 7: Try both parameters one by one with path traversal to access the log file

Step 8: After getting to the log file read the instructions and take note you need to access the

CV_MASTER_RESET_SEQ_001 file for getting the flag and for getting access to that file

you need to add an extra header as well 'X-Chrono-Auth: Override_Approved_Level9'

Challenge 8: Signal From Sector 91

This is a classic layered cryptography challenge. The solution involves peeling back multiple

layers of encoding and encryption in a specific order, using the challenge description and

hints to identify each layer.

This is a step-by-step guide to peeling back the layers and finding the flag. We will primarily

use an online tool like CyberChef, but other tools or custom scripts would work just as well.

The challenge is broken into two main threads: recovering the key and then using that key to

decrypt the flag.

Step 1: Deconstructing the Key – (encoded_key)

Your first task is to tackle the encoded_key. The description tells us it was spoken (Morse), compressed

(Base91), and converted to raw bytes (Hex). We must reverse this process.

1. From Hex: The string is clearly hexadecimal. The first step is to decode it, in CyberChef, use the

"From Hex" operation.

2. From Base91: The result of the hex decoding is a string of various ASCII characters. The hint

mentions a format "more compact than the familiar" and "denser". This points away from

common encodings like Base64. A good candidate is Base91. Add the "From Base91"

operation from dcode.fr.

3. From Morse Code: The output of the Base91 decoding is a string that looks like this: di dah/di

di di di/… The hint about a "rhythmic tongue once used over the air" is a clear reference to Morse

code, written out phonetically.

Add the "From Morse Code" operation. You may need to configure the separator to and the

dot/dash representations to and, or You can just use ChatGPT, the result of this chain is the

plaintext key, the decoded key is: IGUESSYOUFOUNDTHEKEY

Step 2: Unwrapp the Flag – (encoded_flag)

Now that we have the key, we can turn our attention to the encoded_flag. The description

says it's secured with an "older method" and has "two coats of obfuscation."

1. From Hex: Just like the key, the flag is first encoded in hex.

In a new CyberChef recipe, add the "From Hex" operation.

2. From Base64: The result of the hex decoding is a string ending in “==”, which is a classic

signature of Base64 encoding. Add the "From Base64" operation.

3. From Vigenère: The output now is garbled alphabetic text:

NSQZ[WKIVZALSNJWWYBYL]. The hint about the message's transformation following

the "rhythm of the key" points to a polyalphabetic cipher. The most famous one is the

Vigenère cipher. Add the "Vigenère Decode" operation, In the "Key" field of the operation,

paste the key we recovered in Step 1: IGUESSYOUFOUNDTHEKEY

Step 3: The Solution

After decrypting the Vigenère cipher, the plaintext is revealed:

FLAG[EB639CF274AD85FA]

Conclusion

This challenge tests a player's ability to recognize and reverse common (and slightly less common)

encoding and cryptographic layers. Success depends on:

1. Systematic Decoding: Working backwards from the outermost layer (Hex) inwards.

2. Hint Interpretation: Correctly identifying Base91 from the "compact" hint and Morse

code from the "rhythmic tongue" hint.

3. Pattern Recognition: Spotting the signatures of Hex, Base64, and recognizing that

the remaining garbled text must be a classical cipher.

4. Connecting the Pieces: Realizing that the key recovered from the first part of the

challenge is essential for solving the second part.

Challenge 9: Super AI Trader

Challenge Overview

The "Super Trader AI" is a beginner-friendly binary exploitation challenge centered around a

format string vulnerability in a C program. The objective is to extract a flag stored in a file

named api, which contains FLAG[4EL260683A86MC7E].

Participants are provided with the source code and a compiled binary, running remotely on a

server (i.e., ctf.nzcsc.org.nz:61870). The program simulates a stock trading application where

users can:

1. Buy stocks using an AI algorithm (option 1).

2. View their portfolio (option 2).

The vulnerability lies in the buy_stocks function, allowing us to leak stack memory and

retrieve the flag.

Code Analysis

The source code reveals the following key components:

Main Function: Prompts the user to choose between buying stocks (option 1) or viewing

the portfolio (option 2). It initializes a Portfolio struct and calls buy_stocks or

view_portfolio based on input.

buy_stocks Function: Reads the flag from the api file into a local buffer api_buf (128 bytes)

and prompts for an API token:

char api_buf[FLAG_BUFFER];

FILE *f = fopen("api","r");

fgets(api_buf, FLAG_BUFFER,f);

char *user_buf = malloc(300 + 1);

printf("What is your API token?\n");

scanf("%300s", user_buf);

printf("Buying stonks with token:\n");

printf(user_buf); // Format string vulnerability

Vulnerability: The printf(user_buf) call uses user_buf as the format string, allowing us to

control printf's behavior and leak stack memory using format specifiers like %p or %s.

The flag is stored in api_buf, a stack-based buffer, making it accessible via format string

exploitation.

Exploitation

The format string vulnerability in printf(user_buf) lets us read arbitrary stack memory. By

supplying a format string like %p, printf interprets it as "print a pointer" and fetches an 8-byte

value from the stack, displaying it in hexadecimal (e.g., 0x7fffffff1234). A long string of %p

specifiers (e.g., %p%p%p... repeated 150+ times) dumps many stack values, increasing the

chance of leaking api_buf. The provided output contains the flag split across multiple stack

positions, encoded in little-endian format due to the x86_64 architecture.

Decoding the Flag

The output contains the flag in three key positions:

Offset 9: 0x4c45345b47414c46:

Bytes: 4c 45 34 5b 47 41 4c 46

Reverse (little-endian): 46 4c 41 47 5b 34 45 4c

ASCII: FLAG[4EL

Offset 10: 0x3841333836303632:

Bytes: 38 41 33 38 36 30 36 32

Reverse: 32 36 30 36 33 38 41 38

ASCII: 260683A8

Offset 11: 0xa5d4537434d36:

Bytes (partial): a5 d4 53 74 34 d3 06

Reverse: 06 d3 34 74 53 d4 a5

ASCII: Partial (incomplete but suggests 6MC7E]).

Combining these gives: FLAG[4EL260683A86MC7E].

Challenge 10: SecureVault

Initial Analysis

Step 1: Running the Binary

First, let's see what the program does:

Key Observation: Encrypted hint for distraction.

Step 2: Basic File Analysis

Key Observation: The strings command shows fake flags with different bracket types, but

not the real flag. This suggests the real flag is constructed dynamically.

Reverse Engineering with Ghidra

Step 3: Setting Up Ghidra

1. Launch Ghidra and create a new project

2. Import the binary: File → Import File → select 3. Open in CodeBrowser and run auto-

analysis

3. Wait for analysis to complete (green progress bar)

Step 4: Analyzing the Functions

1. Navigate to the main function in the Symbol Tree

2. Examine the decompiled code in the right panel Key findings:

• Anti-debugging check with check debugger()

• XOR decryption of a hint message

• Multiple misleading functions

• Multiple fake flags

• A call to build string() function ← This is important!

• Input comparison with the result of build string()

Step 5: The Critical Discovery - build_string() Function

1. Navigate to build_string: Right-click on the function call and select "Go to build_string"

2. Examine the decompiled code:

Analysis: This function is building a string character by character using hex values!

Flag Extraction

Step 6: Converting Hex to ASCII

The hex values represent ASCII characters. Let's convert them:

Step 7: Constructing the Flag

Reading the ASCII characters in order: F + L + A + G + [+ 2 + 3 + C + 2 + 6 + B + 6 + Z + 3

+ A + 9 + 9 + M + C + 5 + E +]

Result: FLAG[23C26B6Z3A99MC5E]

Step 8: Verify the Flag

Challenge 11: Oracle of Odds and Evens

This challenge is a twist on the classic RSA Least Significant Bit (LSB) Oracle attack. The

two primary complications are:

1. The Noisy Oracle: The oracle has a 10% chance of lying about the parity

(even/odd) of a decrypted message.

2. The Submission Protocol: The goal is not to submit the final plaintext. Instead,

you must submit the exact sequence of upper boundary values from your binary

search, proving you followed the correct decryption path.

This section provides a step-by-step walkthrough of the thought process and actions required to

solve the challenge.

Step 1: Initial Connection and Reconnaissance

First, connect to the server to understand the challenge parameters, via running: nc

ctf.nzcsc.org.nz:40025

The server responds with a welcome banner containing the public key components and the

ciphertext.

From this banner, we extract the critical information:

• N (Public Modulus): The large integer used in the RSA algorithm.

• E (Public Exponent): Typically, 65537.

• C (Ciphertext): The encrypted message we need to decrypt.

The Goal: We must provide a trace of the upper_bound at each of the N.bit_length()

iterations.

The Hurdle: The oracle lies 10% of the time.

The presence of a "parity oracle" (telling us if a decrypted value is even or odd)

immediately points to an RSA LSB Oracle Attack.

Step 2: The Underlying Theory - RSA LSB Oracle Attack

This attack exploits the homomorphic properties of RSA and the information leak from

the LSB oracle. Here's the core logic:

1. We know the original ciphertext C = M^E mod N, where M is the plaintext

message we want to find. M is somewhere in the range [0, N).

2. We can create a new, modified ciphertext C’, by multiplying the original C

with the encryption of 2:

C' = C * (2^E mod N) mod N

C' = (M^E * 2^E) mod N

C' = (2*M)^E mod N

3. We send this new C’ to the oracle. The oracle decrypts it to get M’= 2*M mod N

and tell us its parity (even or odd)

4. This parity tells us about the magnitude of M:

• Case 1: Oracle says M’ is EVEN. This means 2*M mod N is even. This can

only happen if 2*M did not “wrap around” the modulus N, Therefore, 2*M < N,

which implies M < N/2. The original message M is in the lower half of the

possible range.

• Case 2: Oracle says M’ is ODD. This means 2*M mod N is odd. This can only

happen if 2*M did wrap around the modulus N. Therefore, 2*M > N, which

implies M > N/2. The original message M is in the upper half of the possible

range.

By repeating this process, we can halve the search space for M in each iteration,

effectively performing a binary search to find the exact value of M.

Step 3: Dealing with Deception - The Noisy Oracle

The server's hint and description state that the oracle is not always truthful. A single

query could be a lie, which would send our binary search in the completely wrong

direction, making the entire trace invalid.

The solution is statistical. As hinted by "strength in numbers," we should not rely on a

single answer. For each C’ we want to trust, we must query the oracle multiple times and

take majority vote.

• If we query 11 times and get eight '0's and three '1's, we can be highly confident

the true parity is 0 (even).

• Using an odd number of queries (NUMBER_ROBUST_QUERIES = 11 in the

solver) is a good practice to avoid ties.

Step 4: The Automated Solver

The Solver is available at: RsaChallengeHardSolution.py.

Code breakdowns:

1. ask_oracle_robustly: This is the core of our defence against the oracle's lies. It

takes a ciphertext, sends it to the oracle NUM_ROBUST_QUERIES times,

collects all the '0' and '1' responses, and returns the one that appeared most often.

2. Initial Setup: The script connects, receives the banner, and uses regular

expressions to parse out N, E, C, and the required number of iterations.

3. The Main Loop: The script iterates N.bit_length() times. In each iteration i:

a. It establishes the current search range [low, high].

b. It calculates the test ciphertext for the next iteration: test_ct = (current_ct

* 2^E) mod N

c. It calls ask_oracle_robustly with test_ct to get a reliable parity bit.

d. Based on the parity, it updates the bounds: if parity is 0 (even), high =

(low + high) / 2; if parity is 1 (odd), low = (low + high) / 2.

e. It sends the command NEXT_BOUND to the server to signal it's ready to

submit.

f. It waits for the server's prompt and then sends the newly calculated high

value (the required upper bound for this iteration).

g. It updates current_ct to test_ct for the next loop.

https://nzcsc-2025.s3.ap-southeast-2.amazonaws.com/RsaChallengeHardSolution.py

Run the solver: python3 RsaChallengeHardSolution.py

The script will begin the iterative process. It's configured to print progress updates

periodically and for the last few critical iterations.

After submitting all the bounds correctly, the server will verify that the submitted trace

matches its pre-calculated one. If they match, it will award the flag.

The final decrypted message, "You Hacked It!" ALONG WITH FLAG, can be

reconstructed from the final high value for self-verification, but it was not required for

the flag.

Conclusion

This challenge successfully combines a well-known cryptographic attack with two

clever twists that test a player's thoroughness and problem-solving skills. The key

takeaways are:

1. Recognizing the Vulnerability: Identifying the LSB Oracle attack from the

problem description.

2. Building Resiliency: Developing a strategy (majority vote) to overcome the

noise and uncertainty introduced by the deceptive oracle.

3. Attention to Detail: Carefully reading and adhering to the unique submission

protocol, which requires submitting the intermediate state of the binary search

rather than the final answer.

Challenge 12: Operation Ghost Beacon

Step 1: Open the PCAP File in Wireshark analysed the HTTP packets

Step2: Locate the GET Request with Long Data

Step 3: Copy and Decode the Base64 String

Step 4: After decoding the string, you'll get a URL with a download path—open it in your

browser and download the file directly.

Note that the host server in the URL is only an example, the challenge may be hosted on a

different server at NZCSC25.

Step 5: The zip file is password protected, and it will ask for the password when you try to

open it.

Step 6: Now recheck the same HTTP request in the Wireshark; you will find different pages

being requested by the user.

Step 7: In that HTTP request, you will find many page requests; locate page8.html and add it

to the same URL you got from the Base64 decoding

Step 8: You will get a blank page, but when you view its source code, you will find a path to

an image.

Step 9: Now open that image URL in your browser and Download

Step 10: Now use the Exif tool on the downloaded image to check its metadata for any

hidden information in Comment you will also see a Base64 string there

Step 11: decode that base64 string you will get a path

Step 12: Now add that path to the URL and view that URL You will get a list of base64

encoded strings

Step 13: decode that base 64 encoded string

Step 14: Now save this list of decoded passwords, using John-the-Ripper

Step 15: Now extract that Zip file and get file extension is docs file type, now try to analyse

the doc file code and you will get that file format is in zip type.

Or another way you can analyse online as well

Step 16: Change ctf.docx to ctf.zip and extract that zip file. Now start checking each file in

the extracted zip data — you will find a file named document.xml.rels inside the folder

word/_rels/; open that file and view its content to find a target URL.

Step 17: Now Open that URL and view the source you will get an encoded string now find

base 64 string in it and decode

Step 18: Now construct that strings through PowerShell and you will get a Flag with .exe at

end remove the extension and submit the final Flag

Challenge 13: Headerless Truth

Step 1: Download the file Secret.png from the given link, try to open it you will notice the

image is corrupted and won’t display

Step 2: Open the file in a hex editor (e.g., HxD or Bless). Observe the magic bytes (first few

bytes of the file). Instead of the standard PNG header (89 50 4E 47), you’ll find incorrect or

null bytes.

Step 3: Replace the first 8 bytes with the correct PNG signature

Step 4: Now click export and check the image and you see the flag

Challenge 14: Log Analysis

Step 1: Download the docx file and open it, you will find there are serveral images embedded

in the document:

Step 2: Click the second to the last image, right click “Crop”, you will see it is a cropped

image:

Step 3: Now restore it to its original size, you find a hidden Base64-encoded string

Step 4: Decode the string and you get the flag:

Challenge 15: Secure Login

Step 1: Click the link and you are landed at the “Login for flag” page prompting you for the

credential:

Step 2: Now inspect the source of the page, scroll down to the script part, you will find some

credential information leaked there:

Step 3: Login with the credential you found, and you get the Flag:

Challenge 16: Cyber Space

Step 1: Inspect the robots.txt of the site, you will find pages that are declared as disallowed

for crawler access.

Step 2: Try them out one by one and you land at the report.html page which says, “Reports go

here”, but otherwise it is a blank page.

Step 3: But look more closely, when you select the area below, the flag shows up.

Or you can find the flag by viewing the source of the page:

