R1 - Challenge 1

Theme: Steganography

Find the flag in the audio file:

Click here to download the audio.

» 0:00/3:31 H i

Before covering how the audio steganography code works, it pays dividends to understand how audio is stored on
disk.

Digital audio works by sampling audio many times per second. Each sample is a signed value that describes a
normalised value between -1 and 1. Since this value is a signed integer, we can use steganography to store information
in the least significant bit. Commonly, audio is stored as 16-bit ”frames” at a framerate of 44.1KHz.

For audio steganography, the capacity of the stored data is given by the song duration multiplied by the sample rate,
divided by eight. E.G. for a three-minute song at 44.1KHz, we could encode 992,250 bytes using a least-significant-bit
method.

Solution code:

#!/bin/pythond
import sys
import numpy
import wave
import struct

fname = sys.argv[1]

waveform = []
waveformParams = None

with wave.open(fname, ’'rb’) as f:
print (?Width.{}” .format (f.getsampwidth ()))
print (” Sampling Rate_{}” .format (f. getframerate ()))
print (”Frames_{}” .format (f.getnframes ()))
print (” Channels.{}” .format (f. getnchannels ()))
waveformParams = f.getparams ()
waveform = f.readframes(waveformParams.nframes)
waveformLength = len (waveform)
if waveformParams.sampwidth = 2:

floatform = struct.unpack(’h’ * (waveformLength / waveformParams.sampwidth),
waveform)

15

else:
floatform = struct.unpack(’b’ x waveformLength, waveform)
stegLength = waveformParams.nframes / 8
stegData = numpy. zeros (stegLength , dtype=numpy.uint8)
for i in range(stegLength):
byteVal = 0
for shift in range(8):
t = floatform[i x 8 + shift]
byteVal += (t & 0bl) << (7 — shift)
stegData[i] = byteVal
with open(”stego.saurus”, ’wb’) as f:

f.write(stegData.tobytes ())

16

R1 - Challenge 2

Theme: Cryptography

We captured this suspicious outbound communication to a server. This might be of help to you.

Click here for the file.

Hash.txt Contains a long string of decimals for participants to decode.
Test.py Python script which could be written by participants to solve the challenge. Solution: 1. Download the

text file and analyse it 2. Copy the string of decimals in the text file and put it in a python script to decrypt the
decimals. The script removes the repeating “837” number.

MESSAGE = ”678371118371108371038371148379783711683711783710883797837116837105837111837110837
PLAINTEXT = 7~
DECIMALS_LIST = MESSAGE. split ('8377)
for DECIMAL in DECIMALS_LIST:
DECIMAL = int (DECIMAL)
PLAINTEXT = PLAINTEXT + chr (DECIMAL)

print (”Plain.text:\n” + PLAINTEXT)

3. Run the script to obtain the flag

ound the fla

Flag:

flag:8acbf87a2775

17

R1 - Challenge 3

Theme: Web-application

Cookies are not cream!

More info herel >>

Solution:

1. Part of the flag is hidden in a cookie

e 1O Inspector Console [Debugger) Metwork {3} Style Editor () Performance {J M
» E Cache Storage 7 Filter Items
- E Cookies Name Value Domain Path Expires [Max-Age

1.nzcsc.org.nz firstpart:

» E Indexed DB
» E Local Storage

» E Session Storage

2. The other part of the flag is the color of the blue strip in hex

e O Inspector Console [Debugger 4 Network {} StyleEditor () Performance {J Memory [E

Q, search HTML + A T
<!DOCTYPE html> element {3 {
<html lang="en"= [event| [scroll 1
¥ <head= (=) </head .page__content_ container £+ {
¥ <body> background-color: () #bBe6e6;
¥ <div class="navbar"= (= </div> flex 3
w<div class="page content"s flex .page content container Q {
b <div class="page__content_ logo">l=</div> R " R L
content container"= ;;;g:n;o; GE)px e
b =div class="page_ content data"=|-/</div> overflow: B scroll:
=fdiv= 1
<fdiv= o
Inherited from html
</bodv=>

Flag:

flag:2c3d4zb0e0eb

18

thov cls 4
i

cssl
web.cs

R1 - Challenge 4

Theme: Web-application

Bob has developed a flag checker.
Click here to access the service.

On access of Challenge 4, we are presented with the Flag Checker service.
By inspecting the source code of the website, we can discover the check¢lag() functionisexecutedwhenweclicksubmit.

We can see the check rlag() functioncallsthecheckitochecks functionstoseei feachparto fthe flagiscorrect. Itturnedoutthatitwas
forceseveryprintablecharacter, computeitscorrespondinghashwithdi f ferenthashingalgorithmsandputthemintoadictionary |

import hashlib import hmac import string

1 = string.printable

p1 = [quot; 8 faldedd754 f91cc6554¢9e71929cceTquot; , quot; 2db95e8e1a9267b7a118855602013b33quot; , quot; 0cc17569¢0 f 166483
p2 = [quot; 32096¢2¢e0e f f33d844ee6d675407acel8289357dquot; , quot; b6589 f c6ab0dc82¢ f12099d1¢2d40ab994e8410cquot; , quot; !
ps = [quot; 4e07408562bedb8060ce05cldec fe3ad16b72230967de01 f640b7e4729b49 f cequot; , quot; 6b86b273 f f34 fce19d6b804e f f5
P4 = [quot; 01969a94bcf90 f8aad4c3a fe f cTbc046quot; , quot; £832¢b995a8ecd24789¢022d4c93913bquot;

brute force first part dict; = forynl : dicti[hashlib.md5(y.hexdigest()] =q icti[hashlib.shal(y.hexdigest()] =4
icty[hashlib.sha256(y.hexdigest()] =4 icti[hmac.new(quot; purpleporcupinequot; ,y .hexdigest()] =

print 39;39;.join([dictq [z] forzin(p1 + p2 + p3 + p4)])
Flag:

flag:CODoU31rWVGus

19

R1 - Challenge 5

Theme: Cryptography

Plaintext : | |
Key O | | Generate Key |
Cipher text : | | [Encrypt |

EXAMPLES:

Plaintext Key Ciphertext
NZCSC'20 LA cCmZD CNeé0Cpht
Cyber

Security 4U[R.NUEOLW% %& wO97\yazeleLQ_

Cryptography nZnLb®GEYAén U(tzkK 786D »
[FLAG] [REDACTED] aE40é; §IMBALCNI

Solution: 1. Analyse and understand the JavaScript codes 2. The first 5 characters of the ciphertext has to be flag:
(format for a flag) 3. Write (flag:) in the plain text box and copy the first 5 characters of the ciphertext (ajjE4) to
be set as the key, thereafter generate a new ciphertext

4. Use the newly generated ciphertext to set the new state by using the inspect element of the webpage. This is to
set the state to the position of the flag.

5. Now the next 12 elements of the state will display the flag 6. Copy the rest of the ciphertext (ég)§[AQ) and click
generate key and encrypt to obtain the flag

Flag: flag:49e3395{08eb

20

R1 - Challenge 6

Theme: Network Traffic Analysis

Tools Used:

https://www.wireshark.org/

Can you find the flag in the captured network traffic below:

Click here for the file.

complex.pcapng - %
fie [E] View Go Capture Analyze Statistics Telephony Wireless Tools Help
Copy R~ S=
& Find Packet ctri+F v 2= KaafE
Find Next ctri+N +
Find Previous ctri+B Frotacol Lengtofo E
215 36066 - 743/ Len=173
Mark/Unmark Packet Ctri+M TCP 176 34536 - 8009 [PSH, ACK] Seq=1 ACK=1 Win= 524809097 TSecr=2005326 [TCP segient of a reassembled POU]
Mark All Displayed Ctrl+Shift+M Tcp 176 8969 - 34536 [PSH, ACK] Seq=1 Ack=111 Wine! va 524089097 [TCP Segment of a reassembled PDU]
TcP 60 34330 - 3009 [ACK] Seq-Lil Ack=111 Win-3zi Len0 TSval-252490999 TSecr=2665620
TLSv1.2 155 Application Da
234 TcP 54 33744 - 443 [ACK] Seq=1 Ack=102 Win=2227 Len=0
TLSv1.2 115 Application Data
234 Tcp 54 33744 — 443 [ACK] Seq=1 Ack=163 Win=2227 Len=0
ARP 60 Wno has 192.168.0.1817 Tell 192.168.0.164
Ignore/Unignore Packet ctri+D TSvi.2 252 Application Data
234 Tcp 54 33744 - 443 [ACK] Seq=1 Ack=361 Win=2227 Len=0 -
TLSvi.2 98 Application Data
234 Tcp 54 33744 - 443 [ACK] Seq=1 Ack=465 Win=2227 Len=0
TLSvi.2 215 Application Data
SetfUnset Time Reference Curl+T TcP 54 33744 ~ 243 [ACK] Seq=1 ACK=566 Win=2227 Len=D —
66 34574 - 8008 [ACK] Saq=1 ACk=L WANLZ51 Lenco Tsval=2524018939 TSecr=2561405 —
- : =T ck=7 Winm2i3 Lons -
60 Who has 10216801817 Tell 100.168.0.164
TLSv1.2 287 Application Data
234 TcP 54 33744 443 [ACK] Seq=1 Ack=799 Win=2227 Len=0
Time Shift... Ctrl+Shift+T TLSvi.2 183 Application Data
Tcp 54 33744 443 [ACK] Seq=1 Ack=848 Win=2227 Len=0
Packet Comment... Ctrl+Alt+C ARP 60 Who has 182.168.0.1317 Tell 192.168.6.167
Delete All Packet Comments ARP 42 192.168.0.131 is at ic:1b:6d:9f:f =
» Fr ured (1720 bits)
) Ei{ Configuration Profies... an-shin+a oo S e ——
(g preferences.. [l 5 - 255 255255
» Ud U POTL. 7437
) bats (173 bytes)

This looks like a pretty normal packet trace... until we go to
the preferences and enable IPv4 packet checksum validation!

Tf ff ff f ff ff ec 68 Gb fa Oc ec 68 00 45 00 3 E
00 cO 00 00 40 00 40 11 59 6f c@ a8 0@ 81 ff ff 0@ Yo

£f Ff 90 66 1d Od B0 b5 68 4F 4b 41 de de 4F 55 f OKANNOU
25 4o 00 00 00 0O 00 ec 08 6b fa @e ec 41 72 63 N k- -Arc

68 65 72 20 43 39 20 76 32 B 0O B0 80 41 72 63 her C9 v 2. - -Arc
68 65 72 20 43 30 20 76 32 00 0O 00 00 00 0@ @@ her CO v 2

00

80 31 2e 30 32 2¢ 36 35 2e 00 0O 60 60 00 0O B0 1.82.65 .
82

90 0O B0 62 B0 0O 6O 60 6O B0 OO 6O 60 B0 0O 6O

00 00 B0 00 00 0O 00 00 00 00 0O 00 00 0O B0 80
90 0O 6O 60 B0 0O 6O 60 6O B 0O 6O 60 B0 0O 6O

@ 7 complex.pcapng

Wireshark - Preferences

\cap Internet Protocol Version 4
ICEP v Decode IPv4 TOS field as DiffServ field

ICP
1 v 1Pv4

Q
|EEE 802.11
IEEE 802.15.4
|EEE 802.1AH
iFCP
ILP

=g 7| Enable IPv4 geolocation

¥/ Sho 4 tree

v| validate the IPv4 checksum if possible
PT50-

7| SUppoTTP are-fro enabled hardware

INAP i
T and SO1 Interpret Reserved flag as Security flag (RFC 3514)
:;tDecrHﬂk Try heuristic sub-dissectors first
IPDR/SP 1Pv4 UDP port |0
iPerf2
1PMI
IPSICTL
1PV6
IPVS
IPX
IRC
ISAKMP
iSCSI
[] 1SDN -

eSS

~

Gancel || wem

21

Packets: 24326 - Displayed: 24326 (100.0%)

Profile: Default

https://www.wireshark.org/

» Differentiated Services Field: 8x80 (DSCP: CSO, ECN: Not-ECT)
Total Length: 201
Identification: 0x0800 (0)

: 0x4009, Don't fragment

Time to live:

Protocol: UDP (17)

n
ul
b
a

[Header checksum status: Bad]

[Calculated Checksum: 0x797b]

Source: 192.168.0.1

Destination: 255.255.255.255 =
Tf ff £ T 7 f ec 08 0b fa Oe ec 08 00 45 00

80 cO B0 60 40 0O 40 11 59 6 cO a8 60 B1 Ff ff 88 Yo
ff ff 90 66 1d Od 00 b5 08 4f 4b 41 de de 4F 55 T OKANNOU
25 4¢ B0 60 B0 0O B0 ec 08 6b fa Be ec 41 72 63 %N k- -Arc
68 65 72 20 43 30 20 76 32 00 00 00 0@ 41 72 63 her CO v 2 Arc
68 65 72 20 43 39 20 76 32 B 0O 0O 60 B8 0O B0 her C9 v 2

Now we can see a lot of errors in packets with IP frames.

@ 7 complex.pcapng Packets: 24326 - Displayed: 24326 (100.0%) Profile: Default
complex.pcapng - %

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AN iemiRD AeEF S

(W TApply a display

No.

QaaaqiE

3 -] Expression. +

Time Destination

255.255.255.255

Protocol Lengtf Info

796599 XiaomiCo_df:dl:ab Giga-Byt Sf R 60 WhO has 192.168.0.131 5

2.796612 Giga-Byt 97:75:63 XiaomiCo 47:d 42 102.168.9.131 is at ic:1b:0d:97: -
» Frame 1: 215 bytes on wire (1720 bits), 215 bytes captured (1720 bits) E
» Ethernet II, Src: Tp-LinkT_fa:@e:ec (eC:08:6b:fa:8e:ec), Dst: Broadcast (F:ff:ff:ff:ff:ifr)

9160 = Version: 4
.. 0101 = Header Length: 20 bytes (5)
» Differentiated Services Fleld: 8xe0 (DSCP €S0, ECN: Not-ECT)
Total Length:
Identification: 0x0900 (0)
» Flags: 0x4800, Don't fragment
Time to live: 64
Protocol: UDP (17)
Header checksum: Bx596T incorrect, should be x797b(may be caused Dy "IP checksum offload"?)
[Header checksum status: Bad]
[Calculated Checksum: 0x797b]
Source: 192.168.0.1
Destination: 255.255.255.255 i3
f £f Tf £ ff f ec 08 06b fa ¢ ec 08 00 45 09
0010 00 c9 06 69 40 60 40 11 co a8 00 01 ff Tf
r 0 b5 08 4f 4t

25 4o B0 00 00 00 00 ec 08 6b fa Ge ec 41 72 63
68 65 72 20 43 39 20 76 32 B 0O B0 60 41 72 63
68 65 72 20 43 30 20 76 32 00 00 00 00 00 0O 80
90 0O 6O 60 B0 OO 6O 60 6O B 0O 6O 60 B0 0O 6O
00 00 B0 00 00 0O 00 00 00 00 0O 00 00 00 B0 80

This looks like text.

09 31 2e 30 32 2¢ 36 35 2e 00 00 00 6B 60 09 B0 1.82.65 . YO YT TH DI U WY A3 WY 1 Y (
09 0 00 08 60 00 69 01 0 00 0O 61 60 60 09 62 O a8 00 83 cB a8 - -\NG:@- [
09 06 B0 B2 60 69 BY 0B G 0B 0O BO 60 60 0 6O 0> B0 30 2n a1 a1 oo 10 1. o
00 00 90 60 00 0O 0O 60 GO 00 0O 6O 60 00 0O B0 ! 99 50 11 78 03 00 45 00 cT Y

60 60 60 0 00 BB BO 6O 0 0O 6O 8O 08 0O 08 69 i [EN cO a8 00 9c cO aB ---cp-@- [E: -
90 0@ 00 00 80 60 80 v elelSdf40a778048 I 8+ -]

It spells out "You're on the right track"

@ 7 Header checksum (ip.checksum), 2 bytes Packets: 24326 - Displayed: 24326 (100.0%) Profile: Default
complex.pcapng - x

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AN @ mMRE Ae"EFSEE

(WTApply = display filte

Qe aqlf

=

3 -] Expression...

o
No. —S

Time

Destination

Protocel Lengtf Info
= =

. 1817

2.159.136.2 TR i —

23 2.796599 XiaomiCo 4f:dl:ab Giga-Byt 9T: 60 Who has 192.168.0.1317 Tell 192.168.0.167

24 2.796612 Giga-Byt Of:f5:63 XiaomiCo_df: 42 192.168.6.181 is at 1c:1b:0d:97:f5:63 2
QG e 20 s o (i [(), I caplured (432 bits) =
[iomts (o, S rmediys (e R (et e SR (5 Tpllind GoeCers (@pee e

0160 Version: 4

0101 = Header Length: 26 bytes (

Differentiated Services Field: 0x00 (DSCP CSB, ECN: Not-ECT)

Total Length: 40

Identification: @x3cfa (15618)

Flags: 0x4800, Don't fragment

Time to live:

Protocol: TCP B

Header checksim: ©x778d incorrect, should be Bx1121(may be caused by "IP checksum offload"?)

[Calculated Checksum: ©
Source: 192.168.0.131

Destination: 162.159.136.234 =
ec 08 6b fa @e ec ic 1b @d Of f5 63 028 0@ 45 80 k cE-

0010 00 28 3c fa 40 00 40 06 c0 a8 60 83 a2 9F -(<-@-@ [H----:-
88 ea 83 d0 @1 bb 4d 9a ef 78 02 15 35 f1 50 10 .- M x 5P

88 b3 ec cf 00 00

The rest of the packets with invalid checksums aren't text,
but Wireshark does tell us what the valid checksum should be

22

ASCII Table -- Printable Characters

Character Hex |Decimal|| |Character|Hex |Decimal Character |Hex |Decimal

20 [32 @ 40 [64 N 60 | 96
1 21 |33 A 41 |65 a 61 | 97

22 |34 B 42 |6 b 62 | 98
23 [35 c 43 |67 c 63 | 99 Programming Mode v i
B 24 [36 D a1 |68 d 64 [100
% 25 [37 E 45 [69 e 65 [101 77801121 = 666C
& 2 |38 F 46 |70 f 66 102
0 27 [39 G a7 |71 a 67 |103
(28 [40 H a8 |72 h 68 [104
) 29 |41 1 49 |73 i 69 105 666C
- 2a 42 J 4a |74 i 6a 106
+ 2b [43 K ab |75 K 6b 107 Fomitern o 631548 = 2622000
' 2c |44 L 4c |76 ! 6c [108 0000 0000 0000 0000 0000 0000 0000 0000

2d |45 M ad |77 m 6d |100 63 a7 2
. 2e |46 N e |78 h 6e |110 0000 0000 0000 0000 0110 0110 0110 1100

31 15 [}
[2f |47 o a |79 o 6f 111
0 30 |48 P 50 (80 p 70 [112 | =~ o el s]
1 31 [49 Q 51 [81 q 71 113 [¢ | o | e | F | = | moa [ones | wos || 11 |
2 32 |50 R 52 |82 r 72 [114 .
E 3 |51 s 53 |83 s 73 |15 e Jlo llafle || = |lawo [[wor | v || w || «2 |
2 34 |52 T 54 [84 t 74 [116 |4H5H6H7H—H R HGH log H In H .m‘
I s R CIERCS
B 36 |54 v 56 |86 v 76 |18
7 37 |55 w 57 |87 w 77 |19
B 38 |56 X 58 |88 x 78 [120)))
B 39 |57 Y 59 |89 y 79 121 Let's take the difference and compare it against
E & 5 2 & | L 7a 122 our favourite ASCII table:
; 3b |59 5b |01 7 [123 . : .
- r

; L L 666C -> "fl", which is the first two letters of
< 3¢ 60 \ 5c |92 | 7c [124 :
= 3d |61] 5d |93 } 7d [125 flag!
> 3e |62 A Se |94 ~ 7e [126
? 3t [63 - 5f |95 Delete |7f |127
ASCII Table -- Printable Characters
Character [Hex | Decimal Character |Hex | Decimal Character |Hex |Decimal

20 |32 @ 40 |64 F 60 | 96
[21 |33 A a1 [65 a 61 | 97 . .

22 |34 B 42 66 b 62 | 98
23 |35 c a3 |67 c 63 | 99 778D-1121 = 666C
s 24 |[36 D 44 (68 d 64 [100 A14B-3FE4 = 6167
% 25 (37 E 45 (69 e 65 [101 76DF-3CA9 = 3436
& 26 |38 F 46 |70 G 66 |102
' 27 |39 G 47 |71 g 67 |103 3A36
(28 |20 H a8 |72 h 68 [104
) 29 |41 I 49 |73 i 69 105 Hexadecimal v 350668 = 1490210
* 23 42 J A e J 5o 106 0000 0000 0000 0000 0000 0000 0000 0000
+ 2b [43 K a |75 K 6b [107 63 a7 2
. 2c ||44 L 4c |76 | 6c 108 0000 0000 0000 0000 0011 1010 0011 0110

2d |45 M ad |77 m 6d [100 * ® °
: 20 % N a0 78 n s [110 EXEN I ER TR B BN
! 2t |47 ° ar |79 ° 6f 111 [¢ | o | e | F | + | mod || ones || twos || pa |
[] 30 |28 P 50 |80 p 70 [112
1 31 49 Q 51 [81 a 71 (113 Le o fa e || = Jlaw[wor || v || o || <= |
R C— - — e R e O R e N KN R
3 33 |51 s 53 |83 s 73 |15
a 34 (52 T 54 (84 t 74 (116 [o L2 | 2 Jl s |+ | xo ‘ﬁ‘ et | ow | e |
5 35 |53 U 55 |85 u 75 117
6 36 |54 v 56 |86 v 76 |118
7 37 |55 w 57 |87 w 7 |19 Here's the next few characters decoded. It spells
8 38 |6 X 58 [88 x 78 [120 "flag:6" so far... the rest of the characters are
k 39 |57 Y 59 |89 i ™ the rest of the flag.
: 3a |58 z 5a |90 z 7a |122
; 3b |59 [5b |91 { [123 .
< 3c |60 \ 5c |02 | 7c |124 Congratulations :)
= 3d |61 1 5d |93 1 7d [125
> 3e |62 A Se |94 - 7e |126
? 3t |63 _ 5t |95 Delete |71 |[127

23

R1 - Challenge 7

Theme: Cryptography

Beware: What you see is not what it seems!
h2yv:94p6grs7nach

The flag is encrypted with a key.

{w B e afln] =\

= wol{lJalin=%31}

N —(=a =([wi]|
{=(|=0

What you are looking for is the answer to these ancient scripts.

Beware: What you see is not what it seems!
h2yv:94p6qrsTnach

The flag is encrypted with a key.

What you are looking for is the answer to these ancient scripts.
Solution

flag:qwh493dof2c0

This question is not a straightforward question as warned in the puzzle “Beware! What you see is not what it
seems!”. Participants do not need to solve the hieroglyphs to get the flag. However, the hieroglyphs serve as a clue
that the decoder used needs a key.

Hieroglyphs — In Whose Tomb Did Cryptography First Discovered? https://discoveringegypt.com/Hieroglyph-
typewriter-ipad.html

Answer: Khnumhotep II
Cipher used: Vinegere Cipher Key: cryptii (default key from cryptii.com)

You will need to append 0123456789 to the end of the alphabet since it is an alphanumeric cipher.

24

R1 - Challenge 8

Theme: Reverse Engineering

Click here to download the binary

In the reversing challenge, the goal was to extract a 128-bit AES key from the binary and use it to communicate
with the C2 server. The purpose of the challenge was to show that, alone, a secure cypher mode is not a sufficient
authentication factor.

The intended solution was the use of Ghidra; however, other options of extracting the keys are equally as valid. To
this end, the binary utilises a few anti-debugging techniques.

The key is constructed from three locations within the binary and loaded into memory. From here, OpenSSL talks to
the C2 server transmitted an AES-128-GCM encrypted packet containing uint32,(1).1 fapacketissentcontaininguint32:(0), theC

Solution Code: getFlag.py
from cryptography.hazmat.primitives.ciphers.aead import AESGCM import os import struct import requests

The Key needs to be reversed The solution has this key in secret.key key = quot;quot; with open(quot;secret.keyquot;,
quot;rbquot;) as f: key = f.read()

The request for a flag is uint32;(0) AE ADisused, so flippingacyphertextbitwon39; twork

Context aesgemcetx = AESGCM (key)

Payload and IV payload = struct.pack(quot;Iquot;, 0) iv = os.urandom(16)

Encrypt and append cyphertext = iv + aesgemctx.encrypt(iv, payload, None)

Get the flag cryptflag = requests.post(quot;http://sushi.nzcsc.org.nz/c2quot;, data=cyphertext).content

Decrypt it! cfiv = cryptflag[:16] cfdata = cryptflag[16:] print(quot;Got: quot;.format(aesgemetx.decrypt(cfiv, cfdata,
None).decode()))

25

R1 - Challenge 10

Theme: Shredded File

Tools Used: To solve the challenge, we first run the binary file.

QOops we shredded the flag.

Click here for the file.

The above image shows the result of running shred.bin. The text is “Ooops, your important files are shredded. To
obtain the shredded parts, you need to pay xxxx NZD. The price can be negotiated :D “ Of course, we will not be
paying to retrieve the file back, but we could try running “strings” on the file.

After running the “strings” command, you will find that the file contains .zip file. We could extract the zip file by
using online tools like CyberChef. Extracting .zip file will result in 10 files of secret where each of the files contains
some form of string. The string is encoded Base64.

Since the original binary file’s name is shred, we could expect that an original secret file is shredded into these 10
parts of secret. However, concatenating these 10 parts of shredded will not work. The result of running shred.bin
is a hint to solve this challenge. As can be seen that the result of running shred.bin contains 10 vertical lines. This
hints that the first character in the original file will be in the first shredded part, the second character of the original
file will be in the second shredded part, so on and so forth. We can combine the files manually or write a script to
work for us. The below python script can be used to combine the files.

!/usr/bin/python3

files = []

for i in range(10): with open(quot;secret.partquot; + str(i+1), quot;rquot;) as file: files.append(file.read())
output = 39;39;

for char in range(len(files[0])): for i in range(10): if char == len(files[i]): continue else: output += files[i][char]
print (output)

This results in

QSBwYXBIciBzaHJIZGRIciBpcyBhIG11Y2hhbmlj Y WwgZGV2aWNIIHVzZWQgdG8gY 3VOIHBhcGVyIGludG8gZWI10aGVyl
27X JubWVudCBvemdhbml6YXRpb25zLCBidXNpbmVzc2VzLCBhbmQgcHJpdmF0Z SBpbmRpdmlkdWFscyB1c2Ugc2hyZW
Y29uZmlkZW50aWFsLCBvciBvdGhlendpc2Ugc2Vuc210aXZIIGRvY3VtZW50cy4gU2 hyZWRkaW5snIHRvdGFsbHkgd29ya3M
bGVhc2UgemVtZW1iZX1gdGhhdCB0aGlzIGlzIG91c¢iBOb3Agc2ViemVOIGZpbGUuIEt 1ZX AgaXQgc2FmZSEgZmxhZzo2c¢2c0c

Finally, online tool such as Cryptii, can be used to decode the Base64 string. The decoded string contains flag,

flag:6sgdslaxOn2, at the end.

26

R1 - Challenge 11

Bob's computer has been pwned and some of his important files were encrypted by a ransomware. Can you help him retrieve the data from the
memory dump?
Hint: Bob loves Notepad

Click here for the memaory file.

In challenge 11 we are presented with a memory file. The unintended solution is to run either strings or grep on it
and the flag is shown in plaintext. The intended solution is described as follows. We first download the memory file
and used volatility to identify the profile using the imageinfo option.

We can then perform more analysis using this profile option. For example, we can observe the various commands
that were executed using the cmdscan utility.

From here, we can observe several interesting things. 1. There is a powershell command that was executed 2. We
know the content of key.txt We can base64 decode the powershell command to see what it’s doing.

It is downloading a ransomware.exe from a url. We can then proceed to download that ransomware. Once we obtain
the executable, we can do a simple strings analysis on it. We could observe several python libraries in the strings
output.

We assume it was compiled with pyinstaller and proceed to decompiling it. We could use a Pyinstaller Extractor
(https://github.com/extremecoders-re/pyinstxtractor) for this.

We have now obtained the compiled bytecode file ransomware.pyc. To decompile this back to source file, we can use
the tool decompyle3 for this (https://github.com/rocky/python-decompile3).

We can see from the source code that it’s encrypting files in AES CBC mode with an IV of ‘abcedefghijklmnop’
hardcoded in the source file. It also writes the sentence “Encrypted Data” before the encrypted data. Now we have
the key and the IV to

decrypt the encrypted files. As the hint suggested, we should have a look at the Notepad memory. We can use
volatility for this.

We first list the processes using pslist. And then find the PID of notepad and dump the memory of it. We can do a
strings on the memory dump because the encrypted data was written to the file in base64.

Next we can open up strings.dmp and search for the text “Encrypted Data”. We will see the encrypted data in
base64.

Finally, we use CyberChef to decrypt the data.

Flag: flag:RUpF6X0dntqV

27

R1 - Challenge 12

This website is under construction!!!

This is a Server-Side Template Injection (SSTT) challenge. There are various ways to solve this, but all solutions
were based on the insecure usage of the render_template_string() function. Upon visiting the website, we are
presented with a text saying the website is under construction.

However, robots.txt showed two hidden directories.

Navigating to the /secretagent directory, we can observe the webapp. When clicking the button, it shows our User
Agent string.

The other directory /secretsource shows the source code of this webapp. It shows that it’s a simple Flask app.
During the analysis, we can observe several interesting things.

1. The flag is read from app/flag.txt and stored in the secret variable in the app’s config. 2. The User Agent string
is passed to an initial filter which rejects any strings with unwanted characters or strings. 3. A length check of 70
is then performed on the User Agent string 4. If the string “s3cr3tAg3nt” is present in the User Agent string, it
returns a fake flag.

The vulnerability lies in the usage of render_template_string, which allowed code injection from user-supplied
inputs. We could observe this by capturing the request in Burp and sending it to Repeater.

We can see that the supplied input 7*7 was evaluated to 49. This confirms the vulnerability and we can proceed to
exploitation.

Normally, we could just read the config variable by the payload config. However, since it is disallowed, we could not
use it.

However, we could reference the config variable from the url_for function’s __globals__ attribute. So an ideal
payload would be the following.

However, we still need to bypass the WAF. Fortunately we can use the disallowed strings and characters by referencing
from the request.args variables.

Now all that is left is to bypass the length restriction. We can overcome this by setting variables in jinja. For
example, rest of the payload. We can also add the secret variable for displaying it more clearly.

Flag: flag:cjflnnsfpo2b

28

